

 International journal of Engineering Research

 Management Technology

Changing Java’s Semantics for Handling Null Pointer Exceptions

 Sajjade Daraqshan Arshiya Zill

Department of

Abstract

we envision a world where no exceptions are
are total functions. Either an operation executes normally
would have been raised. As an initial step and evaluation of this
null pointer dereferences are handled automatically without a large runtime
by replacing code that raises null pointer exceptions with error
execution. Our technique first finds potential null pointer dereferences and then automatically
programs to insert null checks and
context-sensitive recovery policies. Error
appropriate types, or restore data structure invariants.
program behaves just as the original.
benchmarks, the Java Standard Library, and externally
to handle the reported exceptions and allow the programs
execution time overhead of less than 1% and an average bytecode

1.Introduction

This paper introduces APPEND, an automated approach to preventing and handling null pointer exceptions in
Java programs. Removing null pointer exceptions is an important
functions. Checking for null pointers manually is tedious and error
created by external components or are part of a chain of object references. We analyze programs to loc
possible null pointer dereferences and then insert null checks and error handling code.
is specified at compile-time via compassable
might, for example, create a default object of an appropriate type to replace the null value, skip instructions,
perform logging, restore invariants, or some combination of the above. This approach is especially desirable in
web services or dynamic web content, where users interpret
envelope [23] and high availability is of paramount importance. Because program behavior is preserved when
no null pointers are dereferenced, our approach can be applied to any Java program. Instead of raising
pointer exceptions, we change Java’s semantics for pointer dereferences to a total mapping for all possible
pointer values. Rather than having non
generate recovery code for the null values as well. We aim to transform programs so that null pointer exceptions
are avoided and programs can continue executing without incurring a high run
pointer exceptions, while conceptually simple, remain prevalent in
frequent [31], and have been reported as “a very serious threat to the safety of programs” and are the most
common error in Java programs [7]. Many classes of null pointer exceptions can be found automatically by

International journal of Engineering Research

 &

Management Technology

Changing Java’s Semantics for Handling Null Pointer Exceptions

Sajjade Daraqshan Arshiya Zill-E-Ilahi Shaheen Gulfishan Tamkanat

Department of computer science, JJT University, Rajasthan

e envision a world where no exceptions are raised; instead, language semantics are changed so that operations
are total functions. Either an operation executes normally or tailored recovery code is applied where exceptions

have been raised. As an initial step and evaluation of this idea, we propose to transform programs so that
dereferences are handled automatically without a large runtime overhead. We increase robustness

that raises null pointer exceptions with error-handling code, allowing the program to contin
first finds potential null pointer dereferences and then automatically

 error-handling code. These transformations are guided
sensitive recovery policies. Errorhandling code may, for example, create default objects of

appropriate types, or restore data structure invariants. If no null pointers would be dereferenced, the transformed
program behaves just as the original. We applied our transformation in experim
benchmarks, the Java Standard Library, and externally reported null pointer exceptions. Our technique was
to handle the reported exceptions and allow the programs to continue to do useful work, with an average

erhead of less than 1% and an average bytecode space overhead of 22%.

This paper introduces APPEND, an automated approach to preventing and handling null pointer exceptions in
Java programs. Removing null pointer exceptions is an important first step on the road to dependable total
functions. Checking for null pointers manually is tedious and error-prone, especially when pointer values are
created by external components or are part of a chain of object references. We analyze programs to loc
possible null pointer dereferences and then insert null checks and error handling code.

compassable, context-sensitive recovery policies. Generated handling code
ult object of an appropriate type to replace the null value, skip instructions,

perform logging, restore invariants, or some combination of the above. This approach is especially desirable in
web services or dynamic web content, where users interpret the final results with respect to an acceptability
envelope [23] and high availability is of paramount importance. Because program behavior is preserved when
no null pointers are dereferenced, our approach can be applied to any Java program. Instead of raising
pointer exceptions, we change Java’s semantics for pointer dereferences to a total mapping for all possible
pointer values. Rather than having non-exceptional behavior defined only for valid pointer dereferences, we

l values as well. We aim to transform programs so that null pointer exceptions
are avoided and programs can continue executing without incurring a high run-time cost in space or speed.
pointer exceptions, while conceptually simple, remain prevalent in practice. Null pointer dereferences are
frequent [31], and have been reported as “a very serious threat to the safety of programs” and are the most
common error in Java programs [7]. Many classes of null pointer exceptions can be found automatically by

156

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

Changing Java’s Semantics for Handling Null Pointer Exceptions

Gulfishan Tamkanat Dr.Abhijeet Kawade

computer science, JJT University, Rajasthan

language semantics are changed so that operations
or tailored recovery code is applied where exceptions

ropose to transform programs so that
overhead. We increase robustness
allowing the program to continue

first finds potential null pointer dereferences and then automatically transforms
handling code. These transformations are guided by composable,

code may, for example, create default objects of the
If no null pointers would be dereferenced, the transformed

We applied our transformation in experiments involving multiple
reported null pointer exceptions. Our technique was able

to continue to do useful work, with an average
space overhead of 22%.

This paper introduces APPEND, an automated approach to preventing and handling null pointer exceptions in
first step on the road to dependable total
prone, especially when pointer values are

created by external components or are part of a chain of object references. We analyze programs to locate
possible null pointer dereferences and then insert null checks and error handling code. The error-handling code

sensitive recovery policies. Generated handling code
ult object of an appropriate type to replace the null value, skip instructions,

perform logging, restore invariants, or some combination of the above. This approach is especially desirable in
final results with respect to an acceptability

envelope [23] and high availability is of paramount importance. Because program behavior is preserved when
no null pointers are dereferenced, our approach can be applied to any Java program. Instead of raising null
pointer exceptions, we change Java’s semantics for pointer dereferences to a total mapping for all possible

exceptional behavior defined only for valid pointer dereferences, we
l values as well. We aim to transform programs so that null pointer exceptions

time cost in space or speed. Null
practice. Null pointer dereferences are

frequent [31], and have been reported as “a very serious threat to the safety of programs” and are the most
common error in Java programs [7]. Many classes of null pointer exceptions can be found automatically by

 International journal of Engineering Research

 Management Technology

static analyses [15]. Addressing such risks with fault
techniques that mask memory errors have successfully eliminated security vulnerabilities in servers [25]. Some
programming idioms make static null
database interaction by creating and populating objects with field values based on columns in database tables
(e.g., [2]). The validity or nullity of a reference to such an object depends
run-time. Conservative static analyses typically flag all such uses as potential null dereferences, but some
reports may be viewed as spurious false positives if there are external invariants requiring the presence of
certain objects. In addition, not all defect reports from static analysis tools are addressed [33]. Programs ship
with known bugs [18], and resources may not be available to fix null pointer errors. We propose a program
transformation that automatically ins
required, and developers need not wade through defect reports. Programs are modified according to
compassable recovery policies. Recovery policies are executed at compile
recovery code is inserted that is then executed at run
conceptually related to theorem prover tactics and tacticals or to certain classes of aspect
programming. If no null values are dereferenced at run
original program. If the original program would dereference a null value, the transformed program instead
executes the policy-dictated error-handling code, such as
that expression. Previous research has suggested that programs might successfully continue even with discarded
instructions (e.g., [24]); we present and measure a concrete,
and extend it to allow for user-specified actions.
existing null checking behavior of a Java Virtual Machine. This has the advantages of retaining portability
between different virtual machines and of conceptual simplicity, and the disadvantages of requiring that all
relevant source code be processed in advance. Our transformation can be implemented directly atop existing
program transformation frameworks and dovetails e
to individual source or class files, entire programs, and separate libraries, in any combination. The main
contributions of this paper are a presentation of our technique (Section 3, including ou
in Section 3.3), our notion of recovery policies (Section 4), and experimental evidence (Section 5) to support the
claim that our approach can handle null pointer exceptions in practice with minimal execution time overhead
and low code size overhead (Section 5.3). We begin with a motivating example.

2 Motivating Examples

In this section we walk through the application of our technique to a simple example and to a publicly
defect. We illustrate the process taken by our
handling null pointer exceptions. In practice it is common to perform null pointer checks
an object. Unfortunately, manually inserting
arise from program defects or violated assumptions,
external sources or components. For example, many
ease of programmer manipulation may return null objects if the
dependency on external systems (e.g., databases) can significantly reduce
potential null pointer dereferences [21, 28].

International journal of Engineering Research

 &

Management Technology

atic analyses [15]. Addressing such risks with fault-tolerance techniques is a promising avenue. For example,
techniques that mask memory errors have successfully eliminated security vulnerabilities in servers [25]. Some
programming idioms make static null pointer analyses unattractive. For example, many programs simplify
database interaction by creating and populating objects with field values based on columns in database tables
(e.g., [2]). The validity or nullity of a reference to such an object depends on what is stored in the database at

static analyses typically flag all such uses as potential null dereferences, but some
ous false positives if there are external invariants requiring the presence of

ertain objects. In addition, not all defect reports from static analysis tools are addressed [33]. Programs ship
with known bugs [18], and resources may not be available to fix null pointer errors. We propose a program
transformation that automatically inserts null checks and error handling code. No program annotations are
required, and developers need not wade through defect reports. Programs are modified according to

recovery policies. Recovery policies are executed at compile-time and, depend
recovery code is inserted that is then executed at run-time if the null checks return true. Recovery policies are
conceptually related to theorem prover tactics and tacticals or to certain classes of aspect

ull values are dereferenced at run-time, the transformed program
original program. If the original program would dereference a null value, the transformed program instead

handling code, such as creating a default value on the fly or not calculating
that expression. Previous research has suggested that programs might successfully continue even with discarded
instructions (e.g., [24]); we present and measure a concrete, low-level, annotation-

specified actions. We choose to work at the application rather than modifying the
existing null checking behavior of a Java Virtual Machine. This has the advantages of retaining portability

ifferent virtual machines and of conceptual simplicity, and the disadvantages of requiring that all
relevant source code be processed in advance. Our transformation can be implemented directly atop existing
program transformation frameworks and dovetails easily with standard development processes. It can be applied
to individual source or class files, entire programs, and separate libraries, in any combination. The main

of this paper are a presentation of our technique (Section 3, including ou
in Section 3.3), our notion of recovery policies (Section 4), and experimental evidence (Section 5) to support the
claim that our approach can handle null pointer exceptions in practice with minimal execution time overhead

code size overhead (Section 5.3). We begin with a motivating example.

In this section we walk through the application of our technique to a simple example and to a publicly
defect. We illustrate the process taken by our automatic transformation and highlight the difficulties in manually

In practice it is common to perform null pointer checks
an object. Unfortunately, manually inserting null pointer checks is tedious and error
arise from program defects or violated assumptions, but are perhaps more insidious when they result
external sources or components. For example, many database APIs that convert table entries into objects for

programmer manipulation may return null objects if the requested entity is not in the database. Runtime
on external systems (e.g., databases) can significantly reduce the effectiveness of testing in finding

1, 28].

157

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

a promising avenue. For example,
techniques that mask memory errors have successfully eliminated security vulnerabilities in servers [25]. Some

unattractive. For example, many programs simplify
database interaction by creating and populating objects with field values based on columns in database tables

on what is stored in the database at
static analyses typically flag all such uses as potential null dereferences, but some

ous false positives if there are external invariants requiring the presence of
ertain objects. In addition, not all defect reports from static analysis tools are addressed [33]. Programs ship

with known bugs [18], and resources may not be available to fix null pointer errors. We propose a program
erts null checks and error handling code. No program annotations are

required, and developers need not wade through defect reports. Programs are modified according to
time and, depending on the context,

time if the null checks return true. Recovery policies are
conceptually related to theorem prover tactics and tacticals or to certain classes of aspect-oriented

time, the transformed program behaves just as the
original program. If the original program would dereference a null value, the transformed program instead

creating a default value on the fly or not calculating
that expression. Previous research has suggested that programs might successfully continue even with discarded

-free version of such a system,
We choose to work at the application rather than modifying the

existing null checking behavior of a Java Virtual Machine. This has the advantages of retaining portability
ifferent virtual machines and of conceptual simplicity, and the disadvantages of requiring that all

relevant source code be processed in advance. Our transformation can be implemented directly atop existing
asily with standard development processes. It can be applied

to individual source or class files, entire programs, and separate libraries, in any combination. The main
of this paper are a presentation of our technique (Section 3, including our definition of soundness

in Section 3.3), our notion of recovery policies (Section 4), and experimental evidence (Section 5) to support the
claim that our approach can handle null pointer exceptions in practice with minimal execution time overhead

In this section we walk through the application of our technique to a simple example and to a publicly-reported
automatic transformation and highlight the difficulties in manually

In practice it is common to perform null pointer checks before dereferencing
nd error-prone. Null pointers can

but are perhaps more insidious when they result from
database APIs that convert table entries into objects for

requested entity is not in the database. Runtime
the effectiveness of testing in finding

 International journal of Engineering Research

 Management Technology

1 Person prs = database.getPerson(personID);
2 println("Name: " + prs.getName());
3 println("Zipcode: " + prs.getAddr().getZip());

In the example above, if the requested person is not in
Person object will be returned. One standard defensive

1 Person prs = database.getPerson(personID);
2 if (prs != null)
3 println("Name: " + prs.getName());
4 if (prs != null && prs.getAddr() !=
5 println("Zipcode: " + prs.getAddr().getZip());

This way, if a valid Person is returned, the information
whether as a valid part of the program API or as an invalid
dereference will be prevented. Note that a even when a valid Person object is returned,
within the Person may be null,and must also be explicitly checked. While this example
database, any value that is dereferenced
exception (NPE). The number of NPEs
to the inconsistency of null pointer pre
code is not only time-consuming and error
read.One real-world example of problematic handling of
transforming HTML. This example is taken from a bug report
the code below, the NPE occurs on line 36:

30 Doc xhtml = tidy.parseDOM(in,
31 // translate DOM for dom4j
32 DOMReader xmlReader = new
33 Document doc = xmlReader.read(xhtml);
34 Node table = doc.selectNode("/html/body"

A more precise inter procedural analysis would result in
analysis time is also important for our technique if we propose
work has made context-sensitive flow
sensitive intra procedural analysis for performance and f
simple and predictable analyses, such as Java’s definite assignment rules, and understanding
simplifies reasoning about and debugging the transformed code.

International journal of Engineering Research

 &

Management Technology

Person prs = database.getPerson(personID);
+ prs.getName());

+ prs.getAddr().getZip());

In the example above, if the requested person is not in the database or if the database has been corrupted, a
Person object will be returned. One standard defensive approach is to guard statements with non

Person prs = database.getPerson(personID);

+ prs.getName());
prs.getAddr() != null)

+ prs.getAddr().getZip());

This way, if a valid Person is returned, the information is printed out normally. If a null pointer is returned,
whether as a valid part of the program API or as an invalid record from the database, the null pointer

Note that a even when a valid Person object is returned,
within the Person may be null,and must also be explicitly checked. While this example

abase, any value that is dereferenced could be a null pointer, and should be checked to
exception (NPE). The number of NPEs encountered and the research devoted to preventing them is
to the inconsistency of null pointer prevention in practice [15]. At the same time, manually placing checks

consuming and error-prone, but can also make the code more complex and difficult to
world example of problematic handling of NPEs comes from JTID

HTML. This example is taken from a bug report submitted by a user on a public mailing list.1 In
below, the NPE occurs on line 36:

Doc xhtml = tidy.parseDOM(in, null);

new DOMReader();
Document doc = xmlReader.read(xhtml);

"/html/body");

procedural analysis would result in lower overhead in transformed programs. However,
also important for our technique if we propose to use it as part of the compile chain. Recent

sensitive flow-sensitive analyses more scalable (e.g., [11]), but we chose a flow
analysis for performance and for predictability. Java programmers

such as Java’s definite assignment rules, and understanding
debugging the transformed code.

158

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

the database or if the database has been corrupted, a null
approach is to guard statements with non-null predicates:

is printed out normally. If a null pointer is returned,
from the database, the null pointer

Note that a even when a valid Person object is returned, the Address object
within the Person may be null,and must also be explicitly checked. While this example is for an object from a

could be a null pointer, and should be checked to avoid a null pointer
encountered and the research devoted to preventing them is a testament

in practice [15]. At the same time, manually placing checks in the
can also make the code more complex and difficult to

NPEs comes from JTIDY, a tool for analyzing and
submitted by a user on a public mailing list.1 In

lower overhead in transformed programs. However,
to use it as part of the compile chain. Recent

(e.g., [11]), but we chose a flow-
or predictability. Java programmers are already used to

such as Java’s definite assignment rules, and understanding the transformation

 International journal of Engineering Research

 Management Technology

3.2 Error Handling Transformations

Raising an exception or otherwise terminating the program
improves on the state of the art by inserting null checks guarding
potentially null. However, we must also insert behavior in the case
modular with respect to user-defined recovery actions.
consider inserting well-typed default values. If a null v
to a default initialized value of the appropriate type. We obtain
for the given class; this policy is only applicable if such a default constructor
consideration. In Section 4 we categorize and describe possible recovery policies

Consider the following pseudocode:

1 r6 = virtualinvoke r4.<java.util.Vector:
2 java.lang.String toString()>();

If the value of r4 may be null, then a check would be
dereference. If r4 is of type Vector, the transformed code

1 if (r4 == null)
2 r4 = new Vector();
3 r6 = virtualinvoke r4.<java.lang.Vector:
4 java.lang.String toString()>();

In this manner r4 is sure to be non-null before it is dereferenced,
subsequently referenced without any intervening assignments

3.3 Soundness

Our notion of soundness is that the transformed program
in cases where the original program would not produce a null
apply the appropriate error-handling behavior. We explicitly assume
beyond signaling errors (e.g., using try and catch with NPEs as nonlocal
reasonable: for example, in the 3.5 million lines of
code locations that caught NPEs or their super
code will result in acceptable behavior.
For example, in the particular case of default
not have unintended, permanent side effects beyond
of a computation involving these default values back
specific recovery actions [1, 23, 25], but, admittedly, may
Although we cannot offer a solution for all such s

International journal of Engineering Research

 &

Management Technology

Transformations

Raising an exception or otherwise terminating the program represents the current state of affairs. APPEND
on the state of the art by inserting null checks guarding every dereference that has been flagged as

However, we must also insert behavior in the case where the check fails. Our technique is
defined recovery actions. As a concrete example of an error

typed default values. If a null value would be dereferenced we replace it with a pointer
initialized value of the appropriate type. We obtain such values by calling the default constructors

class; this policy is only applicable if such a default constructor is a
Section 4 we categorize and describe possible recovery policies in more generality.

r4.<java.util.Vector:

value of r4 may be null, then a check would be placed before this line of code to prevent a null pointer
dereference. If r4 is of type Vector, the transformed code would be:

r4.<java.lang.Vector:

null before it is dereferenced, thereby avoiding the NPE. In addition, if r4 is
referenced without any intervening assignments to it, no additional checks are necessary.

Our notion of soundness is that the transformed program should behave exactly as the original program behaves
cases where the original program would not produce a null pointer exception. If a NPE would be raised we

handling behavior. We explicitly assume that programs do not rely on NPEs for uses
errors (e.g., using try and catch with NPEs as nonlocal gotos). In practice, this assumption is

for example, in the 3.5 million lines of code of Eclipse version 3.3.1, there were only 23 source
caught NPEs or their super types. We further assume that the user

behavior. Soundness is thus dependent on the user-
For example, in the particular case of default constructors, we assume that referencing the default
not have unintended, permanent side effects beyond the scope of program execution, such as storing the

tation involving these default values back in a database. Such assumptions are common for domain
recovery actions [1, 23, 25], but, admittedly, may result in unexpected or unintended consequences.

we cannot offer a solution for all such situations, we believe that careful policy construction,

159

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

represents the current state of affairs. APPEND
every dereference that has been flagged as

where the check fails. Our technique is
As a concrete example of an error-handling policy, we

would be dereferenced we replace it with a pointer
such values by calling the default constructors

is available for the type under
in more generality.

placed before this line of code to prevent a null pointer

thereby avoiding the NPE. In addition, if r4 is
to it, no additional checks are necessary.

should behave exactly as the original program behaves
pointer exception. If a NPE would be raised we

that programs do not rely on NPEs for uses
gotos). In practice, this assumption is

3.3.1, there were only 23 source
the user-specified error-handling

-specified error handling code.
constructors, we assume that referencing the default object will

the scope of program execution, such as storing the result
in a database. Such assumptions are common for domain

result in unexpected or unintended consequences.
that careful policy construction,

 International journal of Engineering Research

 Management Technology

combined with logging functionality, will minimize the risk of unwanted situations
debugging efforts in the rare instances

4 Error- Handling and Recovery Policies

Section 3 discussed how APPEND locates potential null
framework for user-specified, compassable
code with context-specific recovery actions.
executed at compile-time and adheres to a
that takes as input the program as a
indicating whether that policy can be applied to that location
standard information that a compiler or source
hierarchies, abstract syntax trees, control flow graphs) and the location gives the
expression that contains the potential
program as a whole and the location of the potential
adapted to follow the recovery policy at that location. A
with a particular class, both as a subject and as a
of other recovery policies.Our notion of composable recovery policies is inspired
procedure and tactical approach used in many automated theorem provers. In this cont
(or abstract interpreters) for separate
together on a common substrate to soundly
theorem proving, proof obligations in the object
[13, 14]), programs written in a meta
tacticals, allowing users to express notions
embody a notion such as, “try to instantiate universally
does not work try algebraic simplification”, a recovery policy in our sy
“try to instantiate the default constructor for this object, and if that does not work
continue.” Our recovery policy notion
context- based program transformations are
direct other aspects [17]. One example of a recovery policy is the default constructor
Section 3.2. That policy is applicable() when the type under consideration has a
arguments. A logging policy is another example: its apply() method inserts calls to a
applicable() whenever the enclosing context is not that logger class (i.e., to
As a final example, a particular skip
applicable() if the location under consideration
errors.

4.1 Policy Granularity

We require the user to provide a global recovery policy
classes and contexts can be annotated with specific recovery
apply function of a global recover policy is given in Figure 1. At
transformation, we invoke global.apply() on each potential nullpointer

International journal of Engineering Research

 &

Management Technology

functionality, will minimize the risk of unwanted situations
debugging efforts in the rare instances when any APPEND inserted recovery code is called.

Handling and Recovery Policies

Section 3 discussed how APPEND locates potential null pointer dereferences. In this section, we describe a
compassable recovery policies that are applied at compile

specific recovery actions. A recovery policy is a first-class object that is manipulated
time and adheres to a particular interface. Each recovery policy has a method

that takes as input the program as a whole and the location of the potential NPE and outputs a
indicating whether that policy can be applied to that location in that context. Here the context represents the

information that a compiler or source-to-source transformation would
syntax trees, control flow graphs) and the location gives the

expression that contains the potential error. Each policy also has an apply method that takes as
whole and the location of the potential NPE and outputs a transformed program that has been

adapted to follow the recovery policy at that location. A recovery policy can be global or it can be associated
a particular class, both as a subject and as a context. Recovery policies can query and compose the actions

recovery policies.Our notion of composable recovery policies is inspired
used in many automated theorem provers. In this cont

 areas, such as linear arithmetic and uninterpreted function
together on a common substrate to soundly decide queries that involve both of their domains [22]. In

rem proving, proof obligations in the object language can be manipulated and simplified by tactics (see
[13, 14]), programs written in a meta language. Tactics can be composed using combining forms called

allowing users to express notions such as “repeat” and “or else”. Just as a theorem prover tactic might
notion such as, “try to instantiate universally-quantified hypotheses on in scope variables, and if that

try algebraic simplification”, a recovery policy in our system might embody a notion such as,
default constructor for this object, and if that does not work

continue.” Our recovery policy notion is also similar to aspect-oriented programming [16], in
based program transformations are applied at compile-time, although aspects typically do not

One example of a recovery policy is the default constructor
ble() when the type under consideration has a

is another example: its apply() method inserts calls to a
context is not that logger class (i.e., to avoid infinite recursion

As a final example, a particular skip policy’s apply() function elides the problematic computation
applicable() if the location under consideration is not a return statement, so as not to propagate

We require the user to provide a global recovery policy or use one of the default ones we provide. Individual
classes and contexts can be annotated with specific recovery policies if desired. Example pseudocode for the

function of a global recover policy is given in Figure 1. At compile-time, during the program analysis and
we invoke global.apply() on each potential nullpointer dereference. The resulting modified code

160

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

functionality, will minimize the risk of unwanted situations and allow for directed
when any APPEND inserted recovery code is called.

dereferences. In this section, we describe a
are applied at compile-time to instrument the

class object that is manipulated and
particular interface. Each recovery policy has a method applicable

and the location of the potential NPE and outputs a Boolean
in that context. Here the context represents the

would have available (e.g., class
syntax trees, control flow graphs) and the location gives the particular statement or

error. Each policy also has an apply method that takes as input the
NPE and outputs a transformed program that has been

recovery policy can be global or it can be associated
policies can query and compose the actions

recovery policies.Our notion of composable recovery policies is inspired by the cooperating decision
used in many automated theorem provers. In this context, decision procedures

areas, such as linear arithmetic and uninterpreted function symbols, work
decide queries that involve both of their domains [22]. In interactive

language can be manipulated and simplified by tactics (see e.g.,
can be composed using combining forms called

“or else”. Just as a theorem prover tactic might
on in scope variables, and if that
might embody a notion such as,

default constructor for this object, and if that does not work try to log the error and
oriented programming [16], in that rule- and

time, although aspects typically do not call or
One example of a recovery policy is the default constructor insertion described in

ble() when the type under consideration has a default constructor with no
is another example: its apply() method inserts calls to a logger and it is

avoid infinite recursion at run-time).
policy’s apply() function elides the problematic computation and it is

is not a return statement, so as not to propagate likely design

or use one of the default ones we provide. Individual
policies if desired. Example pseudocode for the

time, during the program analysis and
dereference. The resulting modified code

 International journal of Engineering Research

 Management Technology

is the final result of our source-to-source transformation. Because we
checking functionality already implemented in the source code, APPEND will
recovery instances because they will already by flagged as not
policy in Figure 1 gives priority to policies associated with the potentially
class. As an example of the former, a particular
program context C and an error location L.

1: if the dereferenced object at L has a policy P1
^ P1.applicable(C,L) then
2: return P1.apply(C,L)
3: else if the context class at L in C has a policy P2
^ P2.applicable(C,L) then
4: return P2.apply(C,L)
5: else if the context method at L in C has a policy P3
^ P3.applicable(C,L) then
6: return P3.apply(C,L)
7: else
8: if logging.applicable(C,L) then
9: C,L logging.apply(C,L)
10: end if
11: if constructor.applicable(C,L) then
12: C,L constructor.apply(C,L)
13: end if
14: return (C,L)
15: end if
Figure 1. An example global recovery policy. This
class for an overriding policy. If no such specific
policies. with GUI Widget objects be handled by recreating the default
application, rather than by creating a newly
application might also associate a po
any null-pointer error encountered might be replaced
presumably knows how to handle transactional
a particular method expected to return a value might
have examined various heuristics for determining an appropriate
general, attempts that stop the execution of a block or function when
stop computing. It is important to note that in our system, the code for these
policy and is present in the transformed code but not the program source code.

4.2 Data Structure Consistency

While skipping one or more statements that depend on
circumstances (e.g., if the value is merely being printed), an
enforce data structure consistency. The program may be in an unchanged

International journal of Engineering Research

 &

Management Technology

source transformation. Because we do not change any user
already implemented in the source code, APPEND will not override such null checks and

they will already by flagged as not-null by our static
policies associated with the potentially-null object and with

class. As an example of the former, a particular application might require that all NPEs associated
program context C and an error location L.

1: if the dereferenced object at L has a policy P1

3: else if the context class at L in C has a policy P2

5: else if the context method at L in C has a policy P3

11: if constructor.applicable(C,L) then

An example global recovery policy. This policy checks the dereferenced object and the enclosing
class for an overriding policy. If no such specific policy is found, it applies both the logging

with GUI Widget objects be handled by recreating the default widget set and redrawing the
by creating a newly-constructed and unattached widget and

application might also associate a policy with a class context. For example, in a User
pointer error encountered might be replaced by “throw new AbortException()” since

presumably knows how to handle transactional semantics. Policies might also be
a particular method expected to return a value might make a best-effort substitution and return. Sidiroglou et al.
have examined various heuristics for determining an appropriate return value for a non

attempts that stop the execution of a block or function when an NPE is prevented are variations of fail
It is important to note that in our system, the code for these halting actions is stored with the

transformed code but not the program source code.

4.2 Data Structure Consistency

While skipping one or more statements that depend on the dereferenced value may be reasonable in some
(e.g., if the value is merely being printed), an orthogonal approach to such fail

cy. The program may be in an unchanged.

161

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

do not change any user-provided null
not override such null checks and

 analysis. The example global
null object and with the surrounding

application might require that all NPEs associated Input: The

policy checks the dereferenced object and the enclosing
policy is found, it applies both the logging and constructor

widget set and redrawing the
constructed and unattached widget and operating on it. An

context. For example, in a User Level Transaction class,
by “throw new AbortException()” since the caller

semantics. Policies might also be specified at the method level;
effort substitution and return. Sidiroglou et al.
return value for a non-void function [27]. In

an NPE is prevented are variations of fail-
halting actions is stored with the

the dereferenced value may be reasonable in some
approach to such fail-stop options is to

 International journal of Engineering Research

 Management Technology

 Input: The program context C and an error location L.
1: if other policy.applicable(C,L) then
2: C,L other policy.apply(C,L)
3: end if
4: for all database writes W(x) reached by L do
5: C,L replace W(x) by “if invariant(x) then
 W(x) else throw new DatabaseException()”
6: end for
7: return (C,L)

Figure 2. An example class-specific recovery policy
NPEs in objects that can be stored in a database. The
executed at run-time. The other policy represents
as the constructor policy from Section 4.
executed instead. Local handling of errors may have
invariants are not restored. For example, an ob
to a database that expects post-processed, validated objects.
computer generated constraints (e.g., [10]) on data structures in the
A simple recovery tactic to prevent cascading errors in such a case
persisting any recovery objects in the database.
could be used to transform the code in such a way
class-specific policy might make additional changes to the
particular invariant were written to the database. A
all of the database write statements that the potentially
then guarded with invariant checks. In practice such a policy would benefit from
ways of preventing the insertion of duplicate checks.
than object-based, recovery actions related to object
blocks as described by Rinard [23], are a lower
corruption of an object could imply, based on the policy, that no operations
as passing it as a parameter to a fun
associated with the corrupt object at runtime.

5 Experimental Results

Although source code complexity need not increase with
utility must be considered. To address these issues, we have conducted
APPEND’s:

• effectiveness at preventing NPEs in sample code
• effectiveness at preventing NPEs in the Java Standard
 Library
• effect on running time and class file size

International journal of Engineering Research

 &

Management Technology

Input: The program context C and an error location L.
1: if other policy.applicable(C,L) then

4: for all database writes W(x) reached by L do
5: C,L replace W(x) by “if invariant(x) then

W(x) else throw new DatabaseException()”

specific recovery policy that maintains an invariant.
NPEs in objects that can be stored in a database. The “if invariant(x) ...” code is added at compile

time. The other policy represents any other policy that might be composed with
Section 4. safe state when the NPE is prevented and the transformed

executed instead. Local handling of errors may have unexpected effects on the rest of the program if important
invariants are not restored. For example, an object created by default in our constructor policy might be written

processed, validated objects. Many proposals exist for using user
constraints (e.g., [10]) on data structures in the program or database to enforce consistency.
tactic to prevent cascading errors in such a case would be to prevent APPEND from

objects in the database. If such constraints were provided as part of the policy,
ed to transform the code in such a way that the invariants are maintained. Figure 2 shows how a

specific policy might make additional changes to the code to enforce that only objects matching a
were written to the database. A simple conservative dataflow analysis could be used to find

write statements that the potentially-null object might reach. Only those write statements are
checks. In practice such a policy would benefit from dead

of duplicate checks. The user may also be able to specify context
based, recovery actions related to object consistency. Context at the class level, as opposed to tas

blocks as described by Rinard [23], are a lower-level version of compartmentalization. For example, the
of an object could imply, based on the policy, that no operations be performed with that object, such

as a parameter to a function. This would involve a context sensitive
object at runtime.

Although source code complexity need not increase with our transformation, byte
must be considered. To address these issues, we have conducted several experiments to evaluate

• effectiveness at preventing NPEs in sample code
• effectiveness at preventing NPEs in the Java Standard

ss file size

162

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

that maintains an invariant. This policy recovers from
“if invariant(x) ...” code is added at compile-time and

any other policy that might be composed with this one, such
safe state when the NPE is prevented and the transformed code is

unexpected effects on the rest of the program if important
by default in our constructor policy might be written

Many proposals exist for using user-defined or
database to enforce consistency.

would be to prevent APPEND from
If such constraints were provided as part of the policy, they

that the invariants are maintained. Figure 2 shows how a
code to enforce that only objects matching a

dataflow analysis could be used to find
Only those write statements are
dead code elimination or other

The user may also be able to specify context-based, rather
consistency. Context at the class level, as opposed to task

of compartmentalization. For example, the
be performed with that object, such

sensitive disabling of execution

our transformation, byte code size, running time and
several experiments to evaluate

 International journal of Engineering Research

 Management Technology

To provide a baseline for measurement, our experiments
Section 3.2 is applicable (i.e., if the dereferenced object
skip policy from Section 4 is applicable (i.e., if the
Otherwise we do nothing. In our experiments default
this policy did involve making compile

5.1 Examples from Application Programs

In this section we show how APPEND can be applied to
bug repositories and forums for examples of code that raised
reliably reproduced, we applied our transformation. We then executed
NPE was no longer raised. Returning to the JTIDY example described in Section 2,
program raised an NPE on line 36 due to the following initialization of the table variable:

35 Node table = doc.selectNode("/html/body"
36 System.err.println("table:" + table.asXML());

After passing the test file through APPEND, we obtained

table : null

Even though the select Node function at line 35 returns
allowing the println statement to execute.
arising from unexpected or unknown behavior
trouble locating a second defect report2 for JTIDY

18 ObjectInputStream in = new ObjectInputStream(
19 new FileInputStream("doc.ser"));
20 Document newDoc = (Document)in.readObject();
21
22 newDoc.getRootElement().addElement(

Here, an NPE on line 22 is caused by behavior in other
initialized,and an element cannot be added
NPE is no longer raised and the result is sensical. Again, APPEND is
execution to continue.

5.2 Java Standard Library Examples

APPEND can also help prevent NPEs in library files. An
standard libraries or untrusted third-

International journal of Engineering Research

 &

Management Technology

To provide a baseline for measurement, our experiments used our default policies: if the constructor policy
Section 3.2 is applicable (i.e., if the dereferenced object has a default constructor), we apply it. Otherwise, if

y from Section 4 is applicable (i.e., if the statement under consideration is not a return), we apply
Otherwise we do nothing. In our experiments default constructors were unavailable 65% of the time, and
this policy did involve making compile-time decisions about which transformation to apply.

5.1 Examples from Application Programs

In this section we show how APPEND can be applied to real-world examples of NPEs. We searched various
repositories and forums for examples of code that raised NPEs, and after verifying that the NPE could be

reproduced, we applied our transformation. We then executed the resulting code, making sure that the
Returning to the JTIDY example described in Section 2,

due to the following initialization of the table variable:

"/html/body");
+ table.asXML());

After passing the test file through APPEND, we obtained this output from line 36:

Node function at line 35 returns a null, APPEND is able to prevent the NPE while still
allowing the println statement to execute. The previous example showed how APPEND can prevent
arising from unexpected or unknown behavior of function calls. NPEs are common in practice, and we
trouble locating a second defect report2 for JTIDY related to this code:

ObjectInputStream(
));

Document newDoc = (Document)in.readObject();

newDoc.getRootElement().addElement("TEST");

Here, an NPE on line 22 is caused by behavior in other parts of the program; new
initialized,and an element cannot be added to it as above. After running the code sample through APPEND, the

longer raised and the result is sensical. Again, APPEND is able to handle the fault and allow

5.2 Java Standard Library Examples

prevent NPEs in library files. An incremental benefit can be gained by transforming
-party components, even if an organization

163

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

used our default policies: if the constructor policy from
has a default constructor), we apply it. Otherwise, if the

statement under consideration is not a return), we apply it.
constructors were unavailable 65% of the time, and thus
about which transformation to apply.

world examples of NPEs. We searched various
NPEs, and after verifying that the NPE could be

the resulting code, making sure that the
Returning to the JTIDY example described in Section 2, the output of the original

due to the following initialization of the table variable:

this output from line 36:

a null, APPEND is able to prevent the NPE while still
The previous example showed how APPEND can prevent NPEs

of function calls. NPEs are common in practice, and we had no

parts of the program; new Doc is not properly
running the code sample through APPEND, the

able to handle the fault and allow

incremental benefit can be gained by transforming
 is unwilling to transform its

 International journal of Engineering Research

 Management Technology

primary codebase. We demonstrate this approach on a defect in
Developer Network bug ID 4191214). The defect itself lies in the library’s URL
sample code to elicit the NPE by accessing a Vector v1 of five URLs:

1 System.out.println(v1.indexOf(new
2 URL("file" ,null ,"C:\\jdk1.1.6\\ src
3 + i + ".txt")));

The uncaught exception in this example originated from
which was called form the equals method of URL, which
library class. After transforming the library with our technique,
uncaught exception, and the overall output is a correct printout
Interestingly, the fix suggested by the defect reporter involves checking that
are not null before they are dereferenced, which is exactly what APPEND implements.
Section 5.1 and Section 5.2 show that A
library levels, even with a simple recovery policy of calling default constructors, or skipping
no default constructor is available. Experiments
used incurs little overhead. Ideally, APPEND
as demonstrated, an incremental benefit can be

5.3 Performance and Overhead

Because APPEND inserts code into class files for null

Figure 3. Runtime overhead on DaCapo, SpecJVM
normalized so that 1.0 is the unmodified execution
columns on the left shown times for unmodified

International journal of Engineering Research

 &

Management Technology

We demonstrate this approach on a defect in the Java Standard Library, version 1.1.6 (Sun
bug ID 4191214). The defect itself lies in the library’s URL class. The bug report included

by accessing a Vector v1 of five URLs:

new
src\\test"

The uncaught exception in this example originated from the host Equal method of the URL class in the library,
which was called form the equals method of URL, which was itself called by the index
library class. After transforming the library with our technique, the host Equal function no longer raises an

exception, and the overall output is a correct printout of the indices of the URLs in the Vector.
fix suggested by the defect reporter involves checking that the values passed in to hostEquals

they are dereferenced, which is exactly what APPEND implements.
show that APPEND is able to prevent real-world NPEs at

recovery policy of calling default constructors, or skipping
no default constructor is available. Experiments in the next section show that converting all classes
used incurs little overhead. Ideally, APPEND would be applied to the entire source package and all libraries,
as demonstrated, an incremental benefit can be observed by transforming even a single file.

Because APPEND inserts code into class files for null checking and recovery, to be usable it must have

Runtime overhead on DaCapo, SpecJVM and application benchmarks. Each column is separately
that 1.0 is the unmodified execution time. Higher values indicate slowdowns. The

columns on the left shown times for unmodified DaCapo and SpecJVM benchmarks run against a
164

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

Standard Library, version 1.1.6 (Sun
class. The bug report included

Equal method of the URL class in the library,
the index Of method of the Vector

Equal function no longer raises an
of the indices of the URLs in the Vector.

the values passed in to hostEquals
they are dereferenced, which is exactly what APPEND implements. These three examples in

world NPEs at both the application and
recovery policy of calling default constructors, or skipping statements when

hat converting all classes and libraries
would be applied to the entire source package and all libraries, but
observed by transforming even a single file.

checking and recovery, to be usable it must have

 only a
and application benchmarks. Each column is separately
time. Higher values indicate slowdowns. The nine light

DaCapo and SpecJVM benchmarks run against a transformed

 International journal of Engineering Research

 Management Technology

standard library. The three dark columns
library. The error bars represent standard
execution time. Using two separate benchmark suites we compared the running
unmodified programs as well as programs subject to our transformation. We measured the
of our usage models: transforming the
transforming the library, we converted
We then ran the benchmark programs against the unmodified library and against our
used the April 30, 2007 build of Apache Harmony JRE, an independent impleme
We used benchmark programs from the the DaCapo [4]
open source, real world applications with non
Figure 3 summarizes the results, reporting the average of twenty trials
program is separately normalized so that 1.0 is the runtime with the unmodified
slowdowns. In these experiments the average
our technique when both the program and the library are transformed.
applications: JAVASCRIPTZIP version 1.0.3, a web application opti
HTML front-end; and SKARINGA version r3p7, a Java
using the standard library, and those running times were compared to versions where both the applications and
the library had been converted by APPEND. Figure 3 shows the average execution time for twenty trials of each
benchmark in rightmost dark gray bars, with an average slowdown for the three applications
less than 1%. Though the average slowdown for our benchmarks was less th
inserted by APPEND and applied at runtime is a substantial increase over the base amount of checking
performed by the unmodified programs. Figure 4 summarizes the number of null checks that were inserted for
three benchmarks at runtime. For the two larger benchmarks, the number of executed null
an average factor of three without a significant runtime slowdown. JAVASCRIPTZIP, the benchmark that
showed the greatest runtime slowdown, performed over a thousa
with APPEND. To be sure that the inserted null checks were actually being called during program execution,
we counted the number of times our null checks are called, versus the number of times user provided null
checks are called, for our three benchmarks. Figure 4 also shows the number of times a null check was called by
the program for both APPEND and user
that our transformation is actually affe
also that the run-time cost of this checking is low. On the other hand, class files subject to our transformation
grew moderately. Figure 5 summarizes the changes in bytecode size wi
1.0. The three programs and the standard library comprised
transformation and 2036k worth of class files after, for a total increase of 22%.

6 Related Work

Our approach falls somewhere between error prevention
similar efforts to improve software quality.
recent research [3, 6, 8, 9]. Many static analysis
well as and other defects, typically at the cost of false
pointer analyses are often high for the reasons discussed in

International journal of Engineering Research

 &

Management Technology

standard library. The three dark columns on the right are transformed applications run against a
library. The error bars represent standard deviations from twenty trials. minor impact on on code size and

two separate benchmark suites we compared the running
programs subject to our transformation. We measured the

of our usage models: transforming the library, and transforming the application.
converted classes in Java’s lang, net, io and util packages
programs against the unmodified library and against our

Apache Harmony JRE, an independent impleme
We used benchmark programs from the the DaCapo [4] project, a benchmark suite intended for Java that uses

source, real world applications with non-trivial memory loads, as well as programs from SPEC JVM98.
izes the results, reporting the average of twenty trials (the nine lighter bars on the left). Each

normalized so that 1.0 is the runtime with the unmodified library; higher numbers indicate
experiments the average slowdown was less than 1%. We also measured the overhead of

when both the program and the library are transformed. We selected three popular open source
JAVASCRIPTZIP version 1.0.3, a web application optimizer; HTMLPARSER versio
end; and SKARINGA version r3p7, a Java-XML binding API. All three were run out

using the standard library, and those running times were compared to versions where both the applications and
PPEND. Figure 3 shows the average execution time for twenty trials of each

benchmark in rightmost dark gray bars, with an average slowdown for the three applications
less than 1%. Though the average slowdown for our benchmarks was less than 1%, the number of null checks
inserted by APPEND and applied at runtime is a substantial increase over the base amount of checking
performed by the unmodified programs. Figure 4 summarizes the number of null checks that were inserted for

ks at runtime. For the two larger benchmarks, the number of executed null
an average factor of three without a significant runtime slowdown. JAVASCRIPTZIP, the benchmark that
showed the greatest runtime slowdown, performed over a thousand times more null

APPEND. To be sure that the inserted null checks were actually being called during program execution,
we counted the number of times our null checks are called, versus the number of times user provided null
checks are called, for our three benchmarks. Figure 4 also shows the number of times a null check was called by
the program for both APPEND and user-inserted guards. From these three experiments we can conclude both
that our transformation is actually affecting the program, in that many additional null

time cost of this checking is low. On the other hand, class files subject to our transformation
grew moderately. Figure 5 summarizes the changes in bytecode size with each entry separately normalized to
1.0. The three programs and the standard library comprised 582 class files totaling 1663k before the
transformation and 2036k worth of class files after, for a total increase of 22%.

s somewhere between error prevention and fault isolation. In this section we contrast it to
efforts to improve software quality. Static analyses to find program defects have been the focus

recent research [3, 6, 8, 9]. Many static analysis tools are able to detect possible null pointer dereferences,
well as and other defects, typically at the cost of false positives and false negatives. False positive rates for null
pointer analyses are often high for the reasons discussed in Section 1, and our transformation approach entirely

165

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

transformed applications run against a transformed
minor impact on on code size and

two separate benchmark suites we compared the running time and bytecode size of
programs subject to our transformation. We measured the performance of both

library, and transforming the application. To measure the impact of
classes in Java’s lang, net, io and util packages with our prototype tool.

programs against the unmodified library and against our transformed library. We
Apache Harmony JRE, an independent implementation of the Java SE 5 JDK.

project, a benchmark suite intended for Java that uses
loads, as well as programs from SPEC JVM98.

(the nine lighter bars on the left). Each
library; higher numbers indicate

We also measured the overhead of
We selected three popular open source

mizer; HTMLPARSER version 1.1, an
XML binding API. All three were run out-of-the-box

using the standard library, and those running times were compared to versions where both the applications and
PPEND. Figure 3 shows the average execution time for twenty trials of each

benchmark in rightmost dark gray bars, with an average slowdown for the three applications-plus libraries of
an 1%, the number of null checks

inserted by APPEND and applied at runtime is a substantial increase over the base amount of checking
performed by the unmodified programs. Figure 4 summarizes the number of null checks that were inserted for

ks at runtime. For the two larger benchmarks, the number of executed null-checks increased by
an average factor of three without a significant runtime slowdown. JAVASCRIPTZIP, the benchmark that

nd times more null-checks when instrumented
APPEND. To be sure that the inserted null checks were actually being called during program execution,

we counted the number of times our null checks are called, versus the number of times user provided null
checks are called, for our three benchmarks. Figure 4 also shows the number of times a null check was called by

inserted guards. From these three experiments we can conclude both
cting the program, in that many additional null-checks are performed, and

time cost of this checking is low. On the other hand, class files subject to our transformation
th each entry separately normalized to

582 class files totaling 1663k before the

and fault isolation. In this section we contrast it to
Static analyses to find program defects have been the focus of much

tools are able to detect possible null pointer dereferences, as
positives and false negatives. False positive rates for null

nd our transformation approach entirely

 International journal of Engineering Research

 Management Technology

avoids false positives at the cost of program overhead. False negatives
restrictions stated in Section 3) since each potential null pointer dereference

Figure 5.
Bytecode size changes for transformed
unmodified bytecode size is 1.0. Larger values indicate code size increases. The
column indicates the java, util, lang and io components of the Harmony
Checkpointing and transactions are common approaches
a checkpointing system that allows unmodified programs to
call is intercepted and logged. Others (e.g., [20, 26]) provide similar
pointer exceptions, not with all system faults.
issue. In Borg et al.’s system, a buggy process that
continue to fail no matter how often it is recovered unless something
this point by noting that the desire to log all events actually conflicts
Such systems are very good at preventing hardware failures and quite poor at
Lowell et al. suggest that 85– 95% of application bugs cause crashes that would not be
transparent systems. Our technique
proposes to use a meta language to partition
encountered, the task is discarded and execution
the output when tasks area discarded, which may allow
have encountered failures. Our work provides no formal bound
Vo et al. describe XEPT, an instrumentation language

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

JavaScriptZip v1.0.3

International journal of Engineering Research

 &

Management Technology

false positives at the cost of program overhead. False negatives do not arise (with some assumptions and
stated in Section 3) since each potential null pointer dereference is guarded by a check.

Bytecode size changes for transformed programs and libraries. Each column is separately
1.0. Larger values indicate code size increases. The
util, lang and io components of the Harmony

Checkpointing and transactions are common approaches to dealing with run-time errors. Borg et al. [5] describe
checkpointing system that allows unmodified programs to survive hardware failures. Essentially, every system

intercepted and logged. Others (e.g., [20, 26]) provide similar services. Our approach deals only with null
not with all system faults. In addition, such techniques address an

issue. In Borg et al.’s system, a buggy process that reads a null value from a database on initialization will
to fail no matter how often it is recovered unless something else changes. Lowell et al. [19] formalize
by noting that the desire to log all events actually conflicts with the ability to recover from all errors.

very good at preventing hardware failures and quite poor at
of application bugs cause crashes that would not be
 addresses an important subset of such application bugs.

language to partition computation into tasks [24]. If a software error or hardware
encountered, the task is discarded and execution continues. The system allows users to bound the distortion
the output when tasks area discarded, which may allow users to confidently accept results of computations th

encountered failures. Our work provides no formal bound but also requires no task
Vo et al. describe XEPT, an instrumentation language that can be used to help detect, mask, recover, and

HTML Parser v1.1 Skaringa r2p7 Java Standard Library

166

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

do not arise (with some assumptions and
is guarded by a check.

programs and libraries. Each column is separately normalized so that the
1.0. Larger values indicate code size increases. The “Java Standard Library”
util, lang and io components of the Harmony Java 1.5 standard library.

time errors. Borg et al. [5] describe
survive hardware failures. Essentially, every system

services. Our approach deals only with null
In addition, such techniques address an orthogonal error handling

reads a null value from a database on initialization will
else changes. Lowell et al. [19] formalize
with the ability to recover from all errors.

 preventing software failures;
of application bugs cause crashes that would not be prevented by a failure-

addresses an important subset of such application bugs. Rinard also
software error or hardware fault is

continues. The system allows users to bound the distortion of
users to confidently accept results of computations that

but also requires no task-division annotations.
that can be used to help detect, mask, recover, and

Java Standard Library

 International journal of Engineering Research

 Management Technology

propagate exceptions from library funct
in situations where

Bench Mark
Program

 Static Null Check

Normal With Append
Increase

JavaScript Zip 9 9932
HTML Parser 170499 623361
Skaringa 371 1732

Figure 4.
 Increase in the number of null checks in the final code by three

The null check columns give counts obtained by instrumenting both the original program and the APPEND
modified program at the bytecode level to record null checks before they are made. The “Static” column counts
the number of checks in the bytecode; the “Dynamic” column measures checks actually performed at run
the source code is not available directly, and in Section 5 we presented experimental results for a library
protection usage model that is similar to
studied by Fu et al. [12]. Because it is difficult to generate exceptional situations, their approach focuses on
white box testing error of handling code by injecting faults. Their techniqu
where it achieves high coverage. By contrast, the null pointer exceptions addressed
unchecked exceptions. Inasmuch as our notion of recovery policies involves
operate on code at compiletime according to rules and contexts, it is tempting to phrase them in terms of aspect
oriented programming (e.g., [16]). Transformations of the form

foo(x);
 =)
 if (x == null)
{

x = new Bar();
}
 foo(x);

 could be reasonably phrased using around advice in popular AOP systems, although it might require separate
advice for each class Bar. However, transformations such as

x = a.b.c;
 =)

 if (a && a.b && a.b.c)
 {
 X = a.b.c;

 }

International journal of Engineering Research

 &

Management Technology

exceptions from library functions when source code is not available [32]. APPEND can also be used

Static Null Check Dynamic Null Check

Normal With Append Normal With Append
Increase

1100x 0 19848
3.66x 190384 1146002
4.66x 296 1360

Increase in the number of null checks in the final code by three benchmarks on their indicative workloads.

The null check columns give counts obtained by instrumenting both the original program and the APPEND
program at the bytecode level to record null checks before they are made. The “Static” column counts

checks in the bytecode; the “Dynamic” column measures checks actually performed at run
the source code is not available directly, and in Section 5 we presented experimental results for a library
protection usage model that is similar to the XEPT approach. Exception handling and error recovery have been
studied by Fu et al. [12]. Because it is difficult to generate exceptional situations, their approach focuses on
white box testing error of handling code by injecting faults. Their technique applies to checked exceptions,
where it achieves high coverage. By contrast, the null pointer exceptions addressed
unchecked exceptions. Inasmuch as our notion of recovery policies involves

on code at compiletime according to rules and contexts, it is tempting to phrase them in terms of aspect
oriented programming (e.g., [16]). Transformations of the form

could be reasonably phrased using around advice in popular AOP systems, although it might require separate
advice for each class Bar. However, transformations such as

167

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

available [32]. APPEND can also be used

Normal With Append

 ∞
 6.02x
 4.60x

benchmarks on their indicative workloads.

The null check columns give counts obtained by instrumenting both the original program and the APPEND-
program at the bytecode level to record null checks before they are made. The “Static” column counts

checks in the bytecode; the “Dynamic” column measures checks actually performed at run-time.
the source code is not available directly, and in Section 5 we presented experimental results for a library-

the XEPT approach. Exception handling and error recovery have been
studied by Fu et al. [12]. Because it is difficult to generate exceptional situations, their approach focuses on

e applies to checked exceptions,
where it achieves high coverage. By contrast, the null pointer exceptions addressed by our approach are usually

 program transformations that
on code at compiletime according to rules and contexts, it is tempting to phrase them in terms of aspect-

could be reasonably phrased using around advice in popular AOP systems, although it might require separate

 International journal of Engineering Research

 Management Technology

cannot always be conveniently phrased in
mechanisms and understanding the semantics when
still an active area of research (e.g., [17]). Our system is
more convenient for composing context
blocks [1] are a way of organizing programs
errors are detected. The error detection takes the form
the code. As long as the acceptability check fails, correction
again. Recovery blocks are quite expressive, and many error
them. The code transformation portion of our approach could be simulated using
entire policy in to the program at each potential n
compile-time with respect to the context
to gain the advantages of composable and
inapplicable recovery policies at run-
based fault tolerance, providing additional examples of efficient
the recovery block scheme. Rinard explores acceptability
the former, systems are built to satisfy key properties rather than to be completely
be viewed in that framework as an applicat
with automatically-generated recovery

7 Conclusions

We presented APPEND, a technique for handling null
pointers by hand can be tedious and error
dereferences and then insert null checks and error handling code. The
composable recovery policies that are queried at compile
sensitive error handling. Such prevention
changing Java’s exceptional behavior semantics. We
operations become total functions where both valid and invalid
actions. In our experiments we were able to take externally reported
programs, showing that our technique can do useful work. We also
applied to programs and to standard libraries. Our approach supports
components to be transformed as desired, both at th
readability) and at the source code level (e.g., for debugging). Although many more null
at run-time, the average execution time slowdown was less than 1% and the average class f
22%. We believe that this technique can
especially in scenarios where finding and fixing an entire class of bugs manually is not practical.

Acknowledgments

We gratefully acknowledge John C. Knight, who first proposed the idea of changing the language’s exception
semantics and also first proposed total functions as the core issue.

International journal of Engineering Research

 &

Management Technology

onveniently phrased in commonly-available AOP systems. In addition, composing
mechanisms and understanding the semantics when multiple pieces of advice apply to the same bit of code is
still an active area of research (e.g., [17]). Our system is much more specialized than AOP, but we claim it is

convenient for composing context-sensitive transformations that apply after null
blocks [1] are a way of organizing programs to include tests for potential errors and recovery
errors are detected. The error detection takes the form of an acceptability check that is explicitly inserted into

code. As long as the acceptability check fails, correction code is executed and the original code is tried
blocks are quite expressive, and many error-handling techniques can be phrased in terms of

portion of our approach could be simulated using recovery blocks by inlining the
at each potential null-pointer dereference. Instead, we

time with respect to the context of the error and use the result to transform the code.
to gain the advantages of composable and reusable policies without paying time and

-time. More recent work (e.g., [29]) applies recovery blocks to algorithm
fault tolerance, providing additional examples of efficient ways of detecting and responding to errors with

Rinard explores acceptability-oriented and failure oblivious
built to satisfy key properties rather than to be completely

an application of resilient computing at the low level of individual
generated recovery actions and no developer-provided specifications.

We presented APPEND, a technique for handling null pointer exceptions in Java
pointers by hand can be tedious and error-prone. We analyze programs to locate possible null pointer

and then insert null checks and error handling code. The handling code is determined by
that are queried at compile-time and transform the program

sensitive error handling. Such prevention and handling of null pointer exceptions is a first step towards
changing Java’s exceptional behavior semantics. We desire a world where exceptions are not raised: instead,

become total functions where both valid and invalid inputs are mapped to specific and tailored
In our experiments we were able to take externally reported null pointer exceptions and transform

showing that our technique can do useful work. We also measured the overhead it induces when
and to standard libraries. Our approach supports incremental adoption, allowing files and

transformed as desired, both at the bytecode level (e.g., for each of development and code
code level (e.g., for debugging). Although many more null

time slowdown was less than 1% and the average class f
22%. We believe that this technique can improve availability by allowing programs to continue to execute,
especially in scenarios where finding and fixing an entire class of bugs manually is not practical.

gratefully acknowledge John C. Knight, who first proposed the idea of changing the language’s exception
semantics and also first proposed total functions as the core issue.

168

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

available AOP systems. In addition, composing aspect
multiple pieces of advice apply to the same bit of code is

ch more specialized than AOP, but we claim it is
that apply after null-checks fail. Recovery

to include tests for potential errors and recovery actions if those
of an acceptability check that is explicitly inserted into

code is executed and the original code is tried
techniques can be phrased in terms of

recovery blocks by inlining the
pointer dereference. Instead, we evaluate the policy at

of the error and use the result to transform the code. This allows users
reusable policies without paying time and space overhead for

work (e.g., [29]) applies recovery blocks to algorithm-
ways of detecting and responding to errors with

oblivious computing [23, 25]. In
built to satisfy key properties rather than to be completely free of errors. Our work can

ion of resilient computing at the low level of individual instructions
provided specifications.

pointer exceptions in Java programs. Checking for null
programs to locate possible null pointer

handling code is determined by
time and transform the program to add context-

and handling of null pointer exceptions is a first step towards
xceptions are not raised: instead,

inputs are mapped to specific and tailored
null pointer exceptions and transform

measured the overhead it induces when
al adoption, allowing files and
each of development and code

code level (e.g., for debugging). Although many more null checks were executed
time slowdown was less than 1% and the average class file size increase was

improve availability by allowing programs to continue to execute,
especially in scenarios where finding and fixing an entire class of bugs manually is not practical.

gratefully acknowledge John C. Knight, who first proposed the idea of changing the language’s exception

 International journal of Engineering Research

 Management Technology

References

1 T. Anderson and R. Kerr. Recovery blocks in action: A system
International Conference on Software Engineering, pages 447

2 M. Atkinson and R. Morrison. Orthogonally persistent object
 402, 1995.
3 T. Ball and S. K. Rajamani. Automatically validating temporal

Workshop on Model Checking of Software, volume 2057 of Lecture Notes
103–122, May 2001.

4 S. M. Blackburn, R. Garner, C. Hoffman,
Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
Phansalkar, D. Stefanovi´c, T. VanDrunen,
benchmarks: Java benchmarking development and analysis. In
Languages, and Applications,

5 A. Borg,W. Blau,W. Graetsch, F. Herrmann, andW. Oberle.
Transactions on Computer Systems,

6 H. Chen, D. Dean, and D. Wagner. Model checking one
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2004.

7 M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz.
java programs. In Principles and practice of programming in Java, pages

8 M. Das, S. Lerner, and M. Seigle. ESP: path
SIGPLAN Notices, 37(5):57–

9 D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system
programmer-
written compiler extensions. In Operating Systems Design and Implementation,

10 M. D. Ernst, A. Czeisler, W. G. Gr
In International Conference on Software Engineering, pages 449

11 S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay.
of aliasing. In International Symposium on Software Testing and Analysis,

12 C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott. Robustness
IEEE Trans. Software Eng., 31(4):292

13 F. Giunchiglia and P. Traverso. Program tactics and logic
259, 1996.

14 J. Hickey and A. Nogin. Extensible hierarchical tactic construction
Proving in Higher Order Logics, pages 136

15 D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and
SIGSOFT Softw. Eng. Notes, 31(1):13

16 G. Kiczales and M. Mezini. Aspect
Conference on Software Engineering, pages 49

17 S. Kojarski and D. H. Lorenz. Awesome: an aspect coweaving
oriented extensions. In Object
515–534, 2007.

18 B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug

International journal of Engineering Research

 &

Management Technology

T. Anderson and R. Kerr. Recovery blocks in action: A system supporti
on Software Engineering, pages 447–457, 1976.

M. Atkinson and R. Morrison. Orthogonally persistent object systems. The VLDB Journal, 4(3):319

Rajamani. Automatically validating temporal safety properties of interfaces. In SPIN
Model Checking of Software, volume 2057 of Lecture Notes

S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D.
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,

Phansalkar, D. Stefanovi´c, T. VanDrunen, D. von Dincklage, and B.Wiedermann. The DaCapo
benchmarking development and analysis. In Object-Oriented Programing, Systems,

 Oct. 2006.
A. Borg,W. Blau,W. Graetsch, F. Herrmann, andW. Oberle. Fault tolerance under UNIX. ACM

Systems, 7(1), Feb. 1989.
H. Chen, D. Dean, and D. Wagner. Model checking one million lines of C code. In Network and

Security Symposium (NDSS), San Diego, CA, Feb. 2004.
M. Cielecki, J. Fulara, K. Jakubczyk, and L. Jancewicz. Propagation of JML non

In Principles and practice of programming in Java, pages 135
M. Das, S. Lerner, and M. Seigle. ESP: path-sensitive program verification in polynomial time.

–68, 2002.
D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system

extensions. In Operating Systems Design and Implementation,
M. D. Ernst, A. Czeisler, W. G. Griswold, and D. Notkin. Quickly detecting relevant program invariants.

Conference on Software Engineering, pages 449–458, 2000.
S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. Effective typestate verification in the presence

International Symposium on Software Testing and Analysis,
C. Fu, A. Milanova, B. G. Ryder, and D. Wonnacott. Robustness testing of java server applications.

Software Eng., 31(4):292–311, 2005.
P. Traverso. Program tactics and logic tactics. Ann. Math. Artif. Intell., 17(3

J. Hickey and A. Nogin. Extensible hierarchical tactic construction in a logical framework. In Theorem
Higher Order Logics, pages 136–151, 2004.

D. Hovemeyer, J. Spacco, and W. Pugh. Evaluating and tuning a static analysis to find null pointer bugs.
Softw. Eng. Notes, 31(1):13–19, 2006.

G. Kiczales and M. Mezini. Aspect-oriented programming and modular reasoning. In International
Engineering, pages 49–58, 2005.

S. Kojarski and D. H. Lorenz. Awesome: an aspect coweaving system for composing multiple aspect
In Object-Oriented Programming, Systems, Languages,

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote program sampling. In

169

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

supporting high reliability. In

systems. The VLDB Journal, 4(3):319–

safety properties of interfaces. In SPIN
Model Checking of Software, volume 2057 of Lecture Notes in Computer Science, pages

McKinley, R. Bentzur, A. Diwan, D.
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss, A.

D. von Dincklage, and B.Wiedermann. The DaCapo
Oriented Programing, Systems,

Fault tolerance under UNIX. ACM

million lines of C code. In Network and
Security Symposium (NDSS), San Diego, CA, Feb. 2004.

Propagation of JML non-null annotations in
135–140, 2006.

verification in polynomial time.

 rules using system-specific,

extensions. In Operating Systems Design and Implementation, 2000.
Quickly detecting relevant program invariants.

2000.
Effective typestate verification in the presence

International Symposium on Software Testing and Analysis, pages 133–144, 2006.
testing of java server applications.

tactics. Ann. Math. Artif. Intell., 17(3-4):235–

in a logical framework. In Theorem

tuning a static analysis to find null pointer bugs.

and modular reasoning. In International

system for composing multiple aspect-
Oriented Programming, Systems, Languages, and Applications, pages

isolation via remote program sampling. In

 International journal of Engineering Research

 Management Technology

 Programming Language Design and Implementation, June 9
19 D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure

recovery. In Operating System Design and Implementation, Oct. 2000.
20 D. E. Lowell and P. M. Chen. Discount checking: transparent,

applications. Technical Report CSE
21 D. Malayeri and J. Aldrich. Practical exception specifications.

Handling Techniques, pages 200
22 G. Nelson and D. C. Oppen. Simplification by cooperating

Lang. Syst., 1(2):245–257, 1979.
23 M. Rinard. Acceptability-oriented computing. In Objectoriented

applications,pages 221–239, 2003.
24 M. Rinard. Probabilistic accuracy bounds for fault

International Conference on Supercomputing, pages 324
25 M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and

availability and security through failure
Implementation, pages 21–21, 2004.

26 J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability
Systems Principles,pages 170–

27 S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis.Building a reactive immune system for software
services. In USENIX Annual Technical Conference, 2005.

28 S. Sinha and M. J. Harrold. Criteria for testing exceptionhandling
Internal Conference on Software Maintenance, pages 265

 29 A. M. Tyrrell. Recovery blocks and algorithm
 1996.
 30 R. Vall´ee-Rai, L. Hendren, V. Sundaresan, P. Lam,
 framework. In CASCON 1999, pages 125
 31 A. van Hoff. The case for java as a programming language.IEEE Internet Computing, 1(1):51
 32 P. Vo and Y. Huang. Xept: a software instrumentation
 Software
 Reliability Engineering, pages 60
 33 W. Weimer. Patches as better bug reports. In Generative
 pages 181–190,2006.

International journal of Engineering Research

 &

Management Technology

Language Design and Implementation, June 9–11 2003.
D. E. Lowell, S. Chandra, and P. M. Chen. Exploring failure transparency and the limits of generic

System Design and Implementation, Oct. 2000.
D. E. Lowell and P. M. Chen. Discount checking: transparent, low-overhead recovery for general

Report CSE-TR-410-99, University of Michigan, 1998.
D. Malayeri and J. Aldrich. Practical exception specifications. In Advanced Topics in Exception

pages 200–220, 2006.
G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures. ACM Trans.

257, 1979.
oriented computing. In Objectoriented programming, systems, languages, and

239, 2003.
M. Rinard. Probabilistic accuracy bounds for fault-tolerant computations that

on Supercomputing, pages 324–334, 2006.
M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu, and J. William S. Beebee. Enhancing server

through failure-oblivious computing. In Opeart
21, 2004.

J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast capability system. In Symposium on Operating
–185, 1999.

S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis.Building a reactive immune system for software
In USENIX Annual Technical Conference, 2005.

S. Sinha and M. J. Harrold. Criteria for testing exceptionhandling constructs in java programs. In
on Software Maintenance, pages 265–, 1999.

A. M. Tyrrell. Recovery blocks and algorithm-based fault tolerance. In EUROMICRO, pages 292

Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co. Soot
In CASCON 1999, pages 125–135, 1999.

A. van Hoff. The case for java as a programming language.IEEE Internet Computing, 1(1):51
software instrumentation method for exception handling. In Symposium on

Reliability Engineering, pages 60–69, Nov. 1997.
W. Weimer. Patches as better bug reports. In Generative Programming and Component Engine

170

 ISSN:2348-4039

 Volume-1,Issue-1

 January 2014

transparency and the limits of generic

overhead recovery for general
ersity of Michigan, 1998.

In Advanced Topics in Exception

decision procedures. ACM Trans. Program.

programming, systems, languages, and

computations that discard tasks. In

J. William S. Beebee. Enhancing server
oblivious computing. In Opearting Systems Design &

system. In Symposium on Operating

S. Sidiroglou, M. Locasto, S. Boyd, and A. Keromytis.Building a reactive immune system for software

constructs in java programs. In

tolerance. In EUROMICRO, pages 292–,

E. Gagnon, and P. Co. Soot - a java optimization

A. van Hoff. The case for java as a programming language.IEEE Internet Computing, 1(1):51–56, 1997.
method for exception handling. In Symposium on

Programming and Component Engineering,

