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Abstract

we envision a world where no exceptionsraised; insteadanguage semantics are changed so that opet
are total functions. Either an operation executesnally or tailored recovery code is applied where excegt
would have been raised. As an initial step and evaluatidghis idea, we popose to transform programs so t
null pointerdereferences are handled automatically withoutrgelauntim: overhead. We increase robustn
by replacing codéhat raises null pointer exceptions with e-handling codeallowing the program to conue
execution. Our techniquérst finds potential null pointer dereferences ah@én automatical transforms
programs to insert null checks aedrorhandling code. These transformations are gt by composable,
contextsensitive recovery policies. Erhandling code may, for example, create default object the
appropriate types, or restore data structure iaaés If no null pointers would be dereferenced, the gfamme
program behaves just as the origi We applied our transformation in expeents involving multiple
benchmarks, the Java Standard Library, and extg reported null pointer exceptions. Our technique able
to handle the reported exceptions and allow theymaro: to continue to do useful work, with an aver:
execution time oerhead of less than 1% and an average byt space overhead of 22

1.Introduction

This paper introduces APPEND, an automated apprtmapheventing and handling null pointer exception
Java programs. Removing null pointer exceptionansmportar first step on the road to dependable t
functions. Checking for null pointers manually elibus and err-prone, especially when pointer values
created by external components or are part of anabfaobject references. We analyze programs tate
possible null pointer dereferences and then imadttchecks and error handling cc The error-handling code
Is specified at compile-time viaompassab, contextsensitive recovery policies. Generated handlinget
might, for example, create a defaobject of an appropriate type to replace th# vaiue, skip instructions
perform logging, restore invariants, or some coratiam of the above. This approach is especiallyrdiele in
web services or dynamic web content, where uséespiret the final results with respect to an acceptabi
envelope [23] and high availability is of paramoumportance. Because program behavior is presemresh
no null pointers are dereferenced, our approachbeaapplied to any Java program. Instead of re null
pointer exceptions, we change Java’s semanticpdorter dereferences to a total mapping for allspgie
pointer values. Rather than having -exceptional behavior defined only for valid pointesreferences, w
generate recovery code for thelrudlues as well. We aim to transform programshso hull pointer exceptior
are avoided and programs can continue executirtgowitincurring a high ri-time cost in space or spe Null
pointer exceptions, while conceptually simple, remarevalent il practice. Null pointer dereferences
frequent [31], and have been reported as “a vernpse threat to the safety of programs” and are ntoest
common error in Java programs [7]. Many classesulif pointer exceptions can be found automatichly
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static analyses [15]. Addressing such risks witht-tolerance techniques &promising avenue. For examg
techniques that mask memory errors have successiuthinated security vulnerabilities in server§]2Some
programming idioms make static r pointer analysesinattractive. For example, many programs simg
database interaction by creating and populatingatbjwith field values based on columns in databases
(e.g., [2]). The validity or nullity of a referente such an object depenon what is stored in the databast
run-time. Conservativestatic analyses typically flag all such uses asmal null dereferences, but soi
reports may be viewed as smws false positives if there are external invasamquiring the presence
certain objects. In addition, not all defect repdrtam static analysis tools are addressed [33]giaras shig
with known bugs [18], and resources may not belabig to fix null pointer errors. We propose a peog
transformation that automatically erts null checks and error handling code. No pmogennotations ar
required, and developers need not wade throughcdefports. Programs are modified according
compassableecovery policies. Recovery policies are executecbapile-time and, depering on the context,
recovery code is inserted that is then executedn-time if the null checks return true. Recovery pekcare
conceptually related to theorem prover tactics dadticals or to certain classes of as-oriented
programming. If no all values are dereferenced at -time, the transformed progri behaves just as the
original program. If the original program would diarence a null value, the transformed programead
executes the policy-dictated ertoandling code, such icreating a default value on the fly or not calanig
that expression. Previous research has suggestegrtdgrams might successfully continue even wiskatdec
instructions (e.g., [24]); we present and measuwrengrete low-level, annotatiofiree version of such a system,
and extend it to allow for usepecified action We choose to work at the application rather thadifgmg the
existing null checking behavior of a Java Virtuahdhine. This has the advantages of retaining pititja
between dferent virtual machines and of conceptual simplicand the disadvantages of requiring thai
relevant source code be processed in advance.r@nsfarmation can be implemented directly atop tags
program transformation frameworks and doveteasily with standard development processes. It esappliec
to individual source or class files, entire progsarand separate libraries, in any combination. an
contributionsof this paper are a presentation of our techni@etjon 3, including ¢ definition of soundness
in Section 3.3), our notion of recovery policieg¢son 4), and experimental evidence (Section Sufaport the
claim that our approach can handle null pointerepkons in practice with minimal execution time dwead
and lowcode size overhead (Section 5.3). We begin witloavating example

2 Motivating Examples

In this section we walk through the applicatioroaf technique to a simple example and to a pul-reported
defect. We illustrate the process taken byautomatic transformation and highlight the diffioes in manuall
handling null pointer exceptionk practice it is common to perform null pointerecks before dereferencing
an object. Unfortunately, manually insert null pointer checks is tedious@ erro-prone. Null pointers can
arise from program defects or violated assumpt but are perhaps more insidious when they r from
external sources or components. For example, database APIs that convert table entries into ¢bjfr
ease oprogrammer manipulation may return null objectthé requested entity is not in the database. Run
dependencyn external systems (e.g., databases) can sigmtiffceduc: the effectiveness of testing in findii
potential null pointer dereferenced [28]
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1 Person prs = database.getPerson(personil
2 printin( "Name: " + prs.getName())
3 printin( "Zipcode: " + prs.getAddr().getZip());

In the example above, if the requested persontig the database or if the database has been corraggnull
Person object will be returned. One standard defe approach is to guard statements with-null predicates:

1 Person prs = database.getPerson(personil
21if (prs = null)

3 printin( "Name: " + prs.getName())

41f (prs = null && prs.getAddr() != null)

5 printin( "Zipcode: " + prs.getAddr().getZip());

This way, if a valid Person is returned, the infatior is printed out normally. If a null pointer is reted
whether as a valid part of the program API or asiraralid record from the database, the null poin
dereference will be preventelNote that a even when a valid Person object ismetl the Address object
within the Person may be null,and must also beiedglchecked. While this examy is for an object from a
datbase, any value that is dereferel could be a null pointer, and should be checke avoid a null pointer
exception (NPE). The number of NF encountered and the research devoted to prevehiemg is a testament
to the inconsistency of null pointer ventionin practice [15]. At the same time, manually placeheck in the
code is not only timgonsuming and err-prone, butcan also make the code more complex and difficu
read.One realvorld example of problematic handling NPEs comes from JTIY, a tool for analyzing and
transformingHTML. This example is taken from a bug rej submitted by a user on a public mailing list.]
the codebelow, the NPE occurs on line

30 Doc xhtml = tidy.parseDOM(in, null);

31 // translate DOM for dom4j

32 DOMReader xmIReader =new DOMReader();
33 Document doc = xmlReader.read(xhtml)

34 Node table = doc.selectNod&ftml/body” );

A more precise inteprocedural analysis would resuli lower overhead in transformed programs. Howe
analysis time isalso important for our technique if we prop to use it as part of the compile chain. Re«
work has made contesensitive flov-sensitive analyses more scalaljéeg., [11]), but we chose a fl«-
sensitive intra procedurahalysis for performance anor predictability. Java programm are already used to
simple and predictable analysesach as Java’s definite assignment rules, and staoheling the transformation
simplifies reasoning about adébugging the transformed cc
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3.2 Error Handling Transformations

Raising an exception or otherwise terminating thegman represents the current state of affairs. APPE
improveson the state of the art by inserting null checkardinc every dereference that has been flagge
potentially null. However, we must also insert behavior in the where the check fails. Our technique
modular with respect to usdefined recovery actior As a concrete example of an e-handling policy, we
consider inserting wellyped default values. If a nulaluewould be dereferenced we replace it with a poi
to a defaultinitialized value of the appropriate type. We oh such values by calling the default construc
for the givenclass; this policy is only applicable if such aaldf constructc is evailable for the type under
consideration. IrSection 4 we categorize and describe possible ezggolicie: in more generalit

Consider the following pseudocode:

116 = virtualinvoke r4.<java.util.Vector:
2 java.lang.String toString()>();

If the value of r4 may be null, then a check woulc placed before this line of code to prevent a nalhtel
dereference. If r4 is of type Vector, the transfedcod would be:

1if (r4 ==null)

2 r4 = new Vector();

3r6 = virtualinvoke r4.<java.lang.Vector:
4 java.lang.String toString()>();

In this manner r4 is sure to be noull before it is dereference thereby avoiding the NPE. In addition, if r4
subsequentlyeferenced without any intervening assignmr to it, no additional checks are necess

3.3 Soundness

Our notion of soundness is that the transformednarc should behave exactly as the original program bet
in cases where the original program would not produceall pointer exception. If a NPE would be raised
apply the appropriate errtiandling behavior. We explicitly assu that programs do not rely on NPEs for u
beyond signalingrrors (e.g., using try and catch with NPEs as o gotos). In practice, this assumptior
reasonablefor example, in the 3.5 million lines «code of Eclipse versioB.3.1, there were only 23 sout
code locations thataught NPEs or their suf types. We further assume thhe use-specified error-handling
code will result in acceptableehavior Soundness is thus dependent on the-secified error handling code.
For example, in the particular case of del constructors, we assume that referencing the d object will
not have unintended, permanent side effects be¢ the scope of program execution, such as storir result
of a comptation involving these default values b in a database. Such assumptions are common forid
specificrecovery actions [1, 23, 25], but, admittedly, | result in unexpected or unintended consequel
Although we cannot offer a solution for all suclituations, we believahat careful policy constructic
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combined with loggingunctionality, will minimize the risk of unwantedtsations and allow for directed
debugging efforts in the rare instan when any APPEND inserted recovery code is c¢

4 Error- Handling and Recovery Policie

Section 3 discussed how APPEND locates potentith pointerdereferences. In this section, we descrit
framework for user-specifiedompassab recovery policies thadre applied at comp-time to instrument the
code with contexspecific recovery actior A recovery policy is a firstlass object that is manipula and
executed at compileme and adheres tc particular interface. Each recovery policy has dahme applicable
that takes as input the program ¢ whole and the location of the potential NPE and outpuiBoolean
indicating whether that policy can be applied tattlocatior in that context. Here the context represents
standardinformation that a compiler or sou-to-source transformatiowould have available (e.g., class
hierarchies, abstractyntax trees, control flow graphs) and the locatgwes th: particular statement or
expression that contains the potel error. Each policy also has an apply method thkégaa input the
program as avhole and the location of the poten NPE and outputs a transformed program that has
adapted to follow the recovery policy at that lomat A recovery policy can be global or it can be assedi
with a particular class, both as a subject anc context. Recoverpolicies can query and compose the act
of otherrecovery policies.Our notion of composable recov@rijcies is inspire by the cooperating decision
procedure and tactical approaeted in many automated theorem provers. In thitext, decision procedures
(or abstract interpreters) for separateas, such as linear arithmetic and uninterprietectior symbols, work
together on a common substrate to soL decide queries that involve both of their domaR®][ In interactive
theaem proving, proof obligations in the objlanguage can be manipulated and simplified bydagse e.g.,
[13, 14]), programs written in a m: language. Tacticean be composed using combining forms ce
tacticals,allowing users to express noticsuch as “repeat” antr else”. Just as a theorem prover tactic m
embody anotion such as, “try to instantiate univers-quantified hypothesesn in scope variables, and if tt
does not workry algebraic simplification”, a recovery policy mur s\stemmight embody a notion such
“try to instantiate thedefault constructor for this object, and if thatedonot wor try to log the error and
continue.” Our recovery policy noti is also similar to aspectiented programming [16], that rule- and
context-based program transformations applied at compiléime, although aspects typically do call or
direct other aspects [17Dne example of a recovery policy is the defaultstautto insertion described in
Section 3.2. That policy is applicie() when the type under consideration h default constructor with no
arguments. A logging policys another example: its apply() method insertsscéll ¢ logger and it is
applicable() whenever the enclosiomntext is not that logger class (i.e.avoid infinite recursio at run-time).
As a final example, a particular s policy’s apply() function elides the problematicngoutatior and it is
applicable() if the location under considera is not a return statement, so as not to prop likely design
errors.

4.1 Policy Granularity

We require the user to provide a global recoverjcp or use one of the default ones we provide. Indizi
classes and contexts can be annotated with speedaven policies if desired. Example pseudocode foi
applyfunction of a global recover policy is given in &g 1. A compiletime, during the program analysis ¢
transformationyve invoke global.apply() on each potential nullgei dereference. The resulting modified cc
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is the final result of our source-smurce transformation. Because do not change any u-provided null
checking functionalityalready implemented in the source code, APPENL not override such null checks a
recovery instances becaubey will already by flagged as r-null by our staticanalysis. The example global
policy in Figure 1 gives priority tpolicies associated with the potenti-null object and wit the surrounding
class. As an example of the former, a partic application might require that all NPEs associ Input: The
program context C and an error locatio

1: if the dereferenced object at L has a polic

A Pl.applicable(C,L) then

2: return P1.apply(C,L)

3: else if the context class at L in C has a pdHé

A P2.applicable(C,L) then

4: return P2.apply(C,L)

5: else if the context method at L in C has a [yoH€

A P3.applicable(C,L) then

6: return P3.apply(C,L)

7: else

8: if logging.applicable(C,L) then

9: C,L logging.apply(C,L)

10: end if

11: if constructor.applicable(C,L) th

12: C,L constructor.apply(C,L)

13: end if

14: return (C,L)

15: end if

Figure 1. An example global recovery policy. T policy checks the dereferenced object and the simc
class for an overriding policy. If no such spec policy is found, it applies both the loggiland constructor
policies. with  GUI Widget objects be handled by recreating tthefaul widget set and redrawing tl
application, rather thamy creating a new-constructed and unattached widget operating on it. An
application might also associate elicy with a classcontext. For example, in a U Level Transaction class,
any nullpointer error encountered might be repleé by “throw new AbortException()” sinc the caller
presumably knows how to handle transacti semantics. Policies might also specified at the method level,
a particular method expected to return a value t make a besgffort substitution and return. Sidiroglou et
have examined various heuristics for determiningygpropriat return value for a nc-void function [27]. In
general attempts that stop the execution of a block or ionovher an NPE is prevented are variations of-
stop computinglt is important to note that in our system, theedor thes halting actions is stored with ti
policy and is present in theansformed code but not the program source

4.2 Data Structure Consistenc

While skipping one or more statements that depen the dereferenced value may be reasonable in :
circumstancege.g., if the value is merely being printed),orthogonalapproach to such fi-stop options is to
enforce data structure consistgnThe program may be in an unchar.
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Input: The program context C and an error locatic
. if other policy.applicable(C,L) th
: C,L other policy.apply(C,L)
end if
. for all database writes W(x) reached by |
: C,L replace W(x) by “if invariant(x) th
W(x) else throw new DatabaseExceptio
: end for
s return (C,L)

O WNE

~N O

Figure 2. An example classpecific recovery polic that maintains an invaria This policy recovers from
NPEs in objects that can be stored in a databds “if invariant(x) ...” code is added at comf-time and
executed at rutime. The other policy represe any other policy that might be composed ) this one, such
as the constructor policy froi8ection 4 safe state when the NPE is prevented and the trenst code is
executed instead. Local handling of errors may unexpected effects on the rest of the program pioirtan
invariants are not restored. For example, gect createdy default in our constructor policy might be wei
to a database that expects posicessed, validated objer Many proposals exist for using u-defined or
computer generatezbnstraints (e.g., [10]) on data structures ir program ormatabase to enforce consister
A simple recoverytactic to prevent cascading errors in such a would be to prevent APPEND fro
persisting any recovergbjects in the databa If such constraints were provided as part of thicp( they
could be ued to transform the code in such a ' that the invariants are maintained. Figure 2 shbas ¢
classspecific policy might make additional changes te code to enforce that only objects matchin
particular invariantvere written to the database.simple conservativdataflow analysis could be used to f
all of the databaserite statements that the potenti-null object might reachOnly those write statements ¢
then guarded with invariachecks. In practice such a policy would benefitfideac code elimination or other
ways of preventing the insertiaf duplicate check The user may also be able to specify cor-based, rather
than objectbased, recovery actions related to ol consistency. Context at the class level, as opptuséatk
blocks as described by Rinard [23], are a l-level versionof compartmentalization. For example,
corruptionof an object could imply, based on the policy, thatoperatior be performed with that object, su
as passing ias a parameter to a iction. This would involve a contexdensitive disabling of execution
associated with the corrupbject at runtime

5 Experimental Results

Although source code complexity need not increaske our transformation, by code size, running time and
utility must be considered. To address these issues, we danducte several experiments to evalui
APPEND'’s:

« effectiveness at preventing NPEs in sample

« effectiveness at preventing NPEs in the Javadata
Library

« effect on running time and dsafile siz
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To provide a baseline for measurement, our expeti used our default policies: if the constructor pg from
Section 3.2 is applicable (i.e., if the dereferehabjec has a default constructor), we apply it. Otherwik the
skip policy from Section 4 is applicable (i.e., if - statement under consideration is not a return)amyy it.
Otherwise we do nothing. In our experiments de constructors were unavailable 65% of the time, thus
this policy did involve making comp-time decisiongbout which transformation to apg

5.1 Examples from Application Program:

In this section we show how APPEND can be appla realworld examples of NPEs. We searched var
bugrepositories and forums for examples of code thiser NPES, and after verifying that the NPE could
reliably reproduced, we applied our transformation. We #vegcute the resulting code, making sure that
NPE was no longer raiseReturning to the JTIDY example described in Secf the output of the original
program raised an NPE on line @6e to the following initialization of the tableneble:

35Node table = doc.selectNod&fatml/body" );
36 System.err.printin("table:" + table.asXML());

After passing the test file through APPEND, we oi#e this output from line 3t
table : null

Even though the selebtode function at line 35 retur a null, APPEND is able to prevent the NPE whildl
allowing the println statement to exect The previous example showed how APPEND can pr NPEs
arising from unexpected or unknown beha of function calls. NPEs are common in practice, &g had no
trouble locating a second defect report2 for JT related to this code:

18 ObjectinputStream in = new ObjectinputStream(
19 new FilelnputStream(“doc.ser"));

20 Document newDoc = (Document)in.readObject(
21

22 newDoc.getRootElement().addElemen'TEST" );

Here, an NPE on line 22 is caused by behavior Irel parts of the program; n¢ Doc is not properly
initialized,and an element cannot be ac to it as above. Afterunning the code sample through APPEND,

NPE is nolonger raised and the result is sensical. AgainPBRD is able to handle the fault and allc

execution to continue.

5.2 Java Standard Library Example

APPEND can also helprevent NPEs in library files. # incremental benefit can be gained by transforn
standard libraries or untrusted thpdrty components, even if an organizatisrunwilling to transform its
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primary codebaselNe demonstrate this approach on a defethe JavaStandard Library, version 1.1.6 (S
Developer Networlbug 1D 4191214). The defect itself lies in the dity's URL class. The bug report includ
sample code to elicit the NRiy accessing a Vector v1 of five UR

1 System.out.printin(v1.indexOf( new
2 URL("file" ,null,"C:\\jdk1.1.6\\ src\\test"
3+i+"xt")));

The uncaught exception in this example originatedh the hostEqual method of the URL class in the libr:
which was called form the equals method of URL,chk was itself called byhe inde: Of method of the Vector
library class. After transforming the library withur technique¢ the hostEqual function no longer raises
uncaughtexception, and the overall output is a correcttptl of the indices of the URLs in the Vect
Interestingly, thdix suggested by the defect reporter involves chmeckha the values passed in to hostEqu
are not null befor¢hey are dereferenced, which is exactly what APPENplements These three examples in
Section 5.1 and Section 5skhow that /PPEND is able to prevent reabrld NPEs ¢ both the application and
library levels, even with a simplecovery policy of calling default constructors,skippin¢ statements when
no default constructor is available. Experim in the next section showat converting all class and libraries
used incurs little overhead. Ideally, APPE would be applied to the entire source package Atitraries. but
as demonstrated, an incremental benefit ciobserved by transforming even a single

5.3 Performance and Overhead

Because APPEND inserts code into class files fdi checking and recovery, to be usable it must t
1.1
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Figure 3. Runtime overhead on DaCapo, Spec. and application benchmarks. Each column is sepw
normalized sahat 1.0 is the unmodified execut time. Higher values indicate slowdowns. " nine light
columns on the left shown times for unmodi DaCapo and SpecJVM benchmarks run agai transformed
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standard library. The three dark colur on the right aréransformed applications run again: transformed
library. The error bars represent stan' deviations from twenty trialsminor impact on on code size a
execution time. Usingwo separate benchmark suites we compared theng time and bytecode size of
unmodified programs as well asograms subject to our transformation. We meastire performance of both
of our usage models: transforming library, and transforming the applicati To measure the impact of
transforming the library, weonvertecclasses in Java’'s lang, net, io and util pack with our prototype tool.
We then ran the benchmapkograms against the unmodified library and agamos transformed library. We
used the April 30, 2007 build &pache Harmony JRE, an independent impintation of the Java SE 5 JDK.
We used benchmark programs from the the DaCaj project, a benchmark suite intended for Java teas
opensource, real world applications with r-trivial memoryloads, as well as programs from SPEC JVN
Figure 3 summazes the results, reporting the average of twerdys (the nine lighter bars on the left). Ee
program is separatetyormalized so that 1.0 is the runtime with the udifed library; higher numbers indica
slowdowns. In thesexperiments the averaslowdown was less than 1%/e also measured the overheac
our techniquavhen both the program and the library are transéok We selected three popular open sot
applications:JAVASCRIPTZIP version 1.0.3, a web application mizer; HTMLPARSER versin 1.1, an
HTML front-end; and SKARINGA version r3p7, a J-XML binding API. All three were run o-of-the-box
using the standard library, and those running timese compared to versions where both the apphicatanc
the library had been converted b¥?REND. Figure 3 shows the average execution timevienty trials of eacl
benchmark in rightmost dark gray bars, with an agerslowdown for the three applicati-plus libraries of
less than 1%. Though the average slowdown for eaclmarks was lessan 1%, the number of null chec
inserted by APPEND and applied at runtime is astrtial increase over the base amount of chec
performed by the unmodified programs. Figure 4 sanwes the number of null checks that were insede
three benchmés at runtime. For the two larger benchmarks, tlmalrer of executed n-checks increased by
an average factor of three without a significanttime slowdown. JAVASCRIPTZIP, the benchmark t
showed the greatest runtime slowdown, performed awdousnd times more nit-checks when instrumented
with APPEND. To be sure that the inserted null checkseveetually being called during program execut
we counted the number of times our null checkscaited, versus the number of times user provided
checks are called, for our three benchmarks. Figuso shows the number of times a null checkaa#led by
the program for both APPEND and r-inserted guards. From these three experiments weaaclude botl
that our transformation is actually ecting the program, in that many additional -checks are performed, and
also that the rumime cost of this checking is low. On the other dhaclass files subject to our transformat
grew moderately. Figure 5 summarizes the changégtecode size \th each entry separately normalizec
1.0. The three programs and the standard libramppesec 582 class files totaling 1663k before -
transformation and 2036k worth of class files after a total increase of 22

6 Related Work

Our approach fadl somewhere between error prever and fault isolation. In this section we contrastoi
similar efforts to improve software quali Static analyses to find program defects have beefocu: of much
recent research [3, 6, 8, 9]. Many static ana tools are able to detect possible null pointer fdeemces as
well as and other defects, typically at the codatse positives and false negatives. False positive fatesull
pointer analyses are often high for the reasormudsed i Section 1, ad our transformation approach entir
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avoidsfalse positives at the cost of program overhealseHaegative do not arise (with some assumptions
restrictionsstated in Section 3) since each potential null {goidereferencis guarded by a chec

1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0 T T T )
JavaScriptZip v1.0.3 HTML Parser v1.1 Skaringa r2p7 Java Standard Library
Figure 5.

Bytecode size changes for transfori programs and libraries. Each column is separ normalized so that the
unmodified bytecode size i$.0. Larger values indicate code size increases “Java Standard Library”
column indicates the javayjtil, lang and io components of the Harm Java 1.5 standard library.
Checkpointing and transactions are common appra to dealing with rurtime errors. Borg et al. [5] descril
acheckpointing system that allows unmodified progsdc survive hardware failures. Essentially, every sys
call isintercepted and logged. Others (e.g., [20, 26]yiplsimilal services. Our approach deals only with |
pointer exceptiongjot with all system fault In addition, such techniques addres orthogonal error handling
issue. In Borg et al.’'s system, a buggy procest reads a null value from a database on initializatigll
continueto fail no matter how often it is recovered unleemethini else changes. Lowell et al. [19] formali
this pointby noting that the desire to log all events acjuatinflicts with the ability to recover from all error
Such systems areery good at preventing hardware failures and gpder a preventing software failures;
Lowell et al. suggest that 85— 9586 application bugs cause crashes that would r prevented by a failure-
transparent systems. Our technigagdresses an important subset of such applicatigs Rinard also
proposes to use a mdéanguage to partitic computation into tasks [24]. Ifsoftware error or hardwe fault is
encountered, the task is discarded and exec continues. The system allows users to bound thertdmn of
the output when tasks area discarded, which may users to confidently accept results of computatibat
haveencountered failures. Our work provides no formalrx but also requires no te-division annotations.
Vo et al. describe XEPT, an instrumentation lang that can be used to help detect, mask, recover
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propagateexceptions from library funions when source code is retailable [32]. APPEND can also be u

in situations where

Bench Mark Static Null Check Dynamic Null Check
Program
Normal With Appeng Normal With Appenc
Increase Increase
JavaScript Zip 9 9932 | 1100x 0 19848 ©
HTML Parser | 170499| 623361 | 3.66x 190384 | 1146002 6.02x
Skaringa 371 1732 | 4.66x 296 1360 4.60x
Figure 4.

Increase in the number of null checks in the fowde by threbenchmarks on their indicative workloe

The null check columns give counts obtained byrimsénting both the original program and the APPI-
modified program at the bytecode level to record null chdxdere they are made. The “Static” column col
the number othecks in the bytecode; the “Dynamic” column measwhecks actually performed at -time.
the source code is not available directly, and &cti®n 5 we presented experimental results fotbear-
protection usage model that is similarthe XEPT approach. Exception handling and erroovery have bee
studied by Fu et al. [12]. Because it is diffictdt generate exceptional situations, their apprdachses or
white box testing error of handling code by injegtifaults. Their technice applies to checked exceptio
where it achieves high coverage. By contrast, thiepointer exceptions addres: by our approach are usually
unchecked exceptions. Inasmuch as our notion adve¥g policies involve program transformations that
operateon code at compiletime according to rules and casidt is tempting to phrase them in terms of at-
oriented programming (e.g., [16]). Transformatiofshe form

foo(x);
=)
if (X == null)
{
X = new Bar();
}
foo(x);

could be reasonably phrased using around advipepalar AOP systems, although it might require sspi
advice for each class Bar. However, transformatsutch a

X = a.b.c;

=)

if (a && a.b && a.b.c)

§< =a.b.c;

}
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cannot always beonveniently phrased commonlyavailable AOP systems. In addition, compo aspect
mechanisms and understanding the semantics multiple pieces of advice apply to the same bitade i
still an active area of research (e.g., [17]). ©ystem i much more specialized than AOP, but we claim
more convenient for composing cont-sensitive transformationthat apply after nu-checks fail. Recovery
blocks [1] are a way of organizing progre to include tests for potential errors and reco\actions if those
errors are detected. The error detection takedotine of an acceptability check that is explicitly ingsttinto
the code. As long as the acceptability check failsyaxdiior code is executed and the original code is 1
again. Recoverylocks are quite expressive, and many +~handlingtechniques can be phrased in term:
them. The code transformatiportion of our approach could be simulated u recovery blocks by inlining th
entire policy in to the prograrat each potentialull-pointer dereference. Instead, evaluate the policy at
compiletime with respect to the cont: of the error and use the result to transform thae This allows users
to gain the advantages of composable reusable policies without paying time i space overhead for
inapplicable recovery policies at Htime. More recenwork (e.g., [29]) applies recovery blocks to altjfomi-
basedault tolerance, providing additional examples ficeent ways of detecting and responding to errors \
the recovery block schemRinard explores acceptabil-oriented and failur@blivious computing [23, 25]. In
the former, systems afmiilt to satisfy key properties rather than to benpletel\ free of errors. Our work can
be viewed in that framework as appliceion of resilient computing at the low level of im@lual instructions
with automaticallygenerated recove actions and no developprevided specification

7 Conclusions

We presented APPEND, a technique for handling pointer exceptions in Ja\programs. Checking for null
pointers by hand can be tedious and ~prone. We analyzerograms to locate possible null poin
dereferencesand then insert null checks and error handling codte handling code is determined
composable recovery policigbat are queried at comg-time and transform the progr. to add context-
sensitive error handling. Such preven and handling of null pointer exceptions is a fistep towarc
changing Java’s exceptional behavior semantics desire a world wherexeeptions are not raised: inste
operationsbecome total functions where both valid and in\ inputs are mapped to specific and tailo
actions.In our experiments we were able to take externadfyortec null pointer exceptions and transfo
programs,showing that our technique can do useful work. e measured the overhead it induces w
applied to programand to standard libraries. Our approach sup incremenal adoption, allowing files an
components to begansformed as desired, both ae bytecode level (e.g., f@ach of development and cc
readability) and at the sourcede level (e.g., for debugging). Although many enoull checks were executed
at run-time, the average executiime slowdown was less than 1% and the averags file size increase was
22%. We believe that this technique improve availability by allowing programs to conian to execute
especially in scenarios where finding and fixingeautire class of bugs manually is not pract
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